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Magnetic Wave Interactions in a Periodically
Corrugated YIG Film

S. R. SESHADRI, SENIOR MEMBER, IEEE

Abstract—The magnetic wave interactions in a YIG film having periodi-
cally corrugated surfaces are investigated for the case of magnetization
parallel to the propagation direction. By a singular boundary perturbation
procedure, the coupled-mode equations governing the nature of the inter-
actions are deduced and analyzed to obtain the characteristics of the
interactions. Representative numerical results are presented to reveal the
characteristics of the resulting wave filter.

I. INTRODUCTION

AGNETIZED epitaxial films of yttrium iron

garnet (YIG) are used in the development of mi-
crowave signal processing devices [1], [2]. These devices
are based on the characteristics of the magnetic waves
guided by YIG films. An important feature is that the
small propagation wavelengths of the magnetic waves
result in microminiature structures. Extensive theoretical
and experimental investigations of the characteristics of
the magnetic waves supported by YIG films have been
carried out for different directions of magnetization [3]-
[8]. If the YIG films have spatially periodic properties, the
guided waves propagating in opposite directions interact
to produce a stopband in frequency resulting in a wave
filter [9]. With application to a mictowave filter in mind,
Tsutsumi, Sakaguchi, and Kumagai [10] have investigated
the behavior of the magnetic waves in a periodically
corrugated YIG slab using the Floquet theory. In this
paper, we give a perturbation theory of magnetic wave
interactions in a YIG film having periodically corrugated
surfaces for the case of magnetization parallel to the
propagation direction. An important contribution is the
systematic derivation of the coupled-mode equations
governing the nature of the interactions. The analysis of
the coupled-mode equations has yielded simple and yet
asymptotically exact analytical expressions for the char-
acteristics of the microwave filter formed by a periodically
corrugated YIG film. Although the theory is developed
for sinusoidal surface corrugations, in practice, an array
of shallow grooves is etched on the surface of the YIG.
For this case, by a Fourier analysis, the modulation index
for each of the harmonic undulations of the surface can
be deduced. The theory presented in this paper is then
applicable for each of the harmonic surface perturbations.

Manuscript received January 20, 1978; revised May 15, 1978.
The author is with the Department of Electrical and Computer En-
gineering, the University of Wisconsin-Madison, Madison, W1 53706.

DIELECTRIC

DIELECTRIC

Fig. 1. Geometry of the periodically corrugated YIG film.

The sinusoidal corrugation corresponding to each of the
harmonics gives rise to selective reflection and, hence,
filtering action at a particular frequency.

II. FORMULATION OF THE PROBLEM

A thin film [|x]| <d(z)] of YIG (g p,.€o€,) magnetized
uniformly in the z direction is embedded in a dielectric
medium ( py, €5) as shown in Fig. 1. The angular frequency
corresponding to the saturation magnetization of the
ferrite is denoted by w,, and the corresponding wavenum-
ber k,, = w,,( po€oe,)'/?. We normalize the time by 1/w,,,
all the distances by 1/k,,, the magnetic field by () /%,
and the magnetic flux density by (ug)'/% Let ¢, (x,y,z), H,
and B denote the normalized values of the time, the three
Cartesian coordinates, the magnetic field, and the mag-
netic flux density, respectively. We shall consider only
magnetic waves (H,, H., B, B,) progressing in the z direc-
tion, possessing no variation in the y direction, and having
the time dependence exp (—iwt) where w is the wave
angular frequency. The relative permeability p, of the
ferrite is obtained as

B = p(RE+IP) + iy (%) ~9%) + 22 (1)
m=1-0./(«’~a?) (22)
p=w/(w’=w]) (2b)

where w_1is the gyromagnetic angular frequency.

The boundary surfaces x = = d(z) of the YIG film have
weak sinusoidal undulations about the planes x=*d as
given by

x=*d(z)=*+d[ 1+ & cos Kz]. 3)

The modulation index 7, the phase, and the spatial peri-
odicity 2« / K of the undulations are the same for both the
surfaces x= * d(z) with the result that the YIG film is
symmetrical about the x =0 plane. The modulation index
7 i1s small, and a formal expansion parameter § is used to
exhibit its smallness.
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In the magnetostatic approximation [3], [10], H(r) can
be obtained in terms of a scalar magnetic potential J(r)
through the relation

H(r)=Vi(r) (4)

and B(r) inside the YIG and outside are given by
B(r)=p, H(r), for|x|<d(z) (5a)
B(r)=H(r), for |x|>d(z). (5b)

A subscript f or v is added to ¢ according to whether ¢
pertains to the ferrite or the dielectric region. For |x|<
d(2), y; satisfies the differential equation

) 2 3 2

(1 + 25 ot =0 ©

The potentials and the fields have either odd or even
symmetry about the x =0 plane. Since the geometry of the
YIG film is also symmetrical about the x =0 plane, two
independent modes are possible, one for which ¢ is even
in x, and the other for which it is odd in x. This symmetry
enables us to omit from consideration the fields for x < 0.
We investigate only the mode for which ¢ is odd in x for
the following two reasons. First, the lowest order mode for
which ¢ is odd in x is the dominant mode. Previously, for
the mode for which ¢ is odd in x, Tsutsumi, Sakaguchi,
and Kumagai [10] have determined the wave characteris-
tics by an approximation of the results of the Floquet
theory. Since we wish to compare some of our results with
those of Tsutsumi, Sakaguchi, and Kumagai [10], we also
treat the same mode for which ¢ is odd in x. However, it
should be noted that the mode for which ¢ is even in x
can be treated in a similar manner.

A boundary layer expansion of w as given by

(7

is introduced around w, which will be chosen subse-
quently. Substituting (7) in (2a), expanding the resulting
expression, and retaining only up to terms linear in 8, we
get

@w=wy+ dw,

(8)

1= o+ Oy,
where

(%a)

(9b)

#w:l"“-’c/("-’g_wcz)

2

1 = 20,000,/ (@0F — 7).
Using the method of multiple scales [11], we carry out a
perturbation expansion of ¢ in the form

l[/,(x,Z) = ¢t0(x'zo’zl) + 8¢t1(x,20,21), [= 09f (10)

where z,= z is a short scale of the order of the wavelength
in the YIG film and z, =6z is a long scale in which the
accumulated changes of the complex wave amplitude re-
sulting from the spatially periodic thickness of the film
become significant. Using the chain rule of differentiation,
we have

(1)
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Substituting (8), (10), and (11) in (6) and equating the
coefficients of equal powers of 8, we get the following
differential equations:

o(1):
92 92
[Mlo“a“x_z""az_g}%o:o (12)
0(8):
32 32 32 32
[ o7 + gg }Pﬂ—- —#11551#/0'25;;55%0 (13)

In (6), (12), and (13), setting p1; = p,o=1 and pu,; =0, we
obtain the corresponding equations for the dielectric re-
gion |x|>d(z).

The required boundary conditions are
H,(x,z2)=H,(x,z)+(dx/dz)H (x,z)
is continuous for x=d(z) (14)
Byor(X.2) = B.(x,2) —(dx/dz) B,(x.2)

is continuous for x=d(z). (15)
From (3), (dx/dz) along x = d(z) can be determined. With
the help of (4), (5), (8), (10), and (11), the perturbation
expansions of H,, (x,z) and B, (x,z) for x=d(z) can be
obtained. Since the boundaries of the YIG film are very
nearly the planar surfaces x= *d, equivalent boundary
conditions are derived and applied at the planar surfaces
x= *d. For this purpose, further Taylor series expansions
of the perturbation expansions of H,, [d(2),z] and
B, [d(2),z] around x = d are carried out, keeping only up
to terms linear in §. In these expansions, equating the
coefficients of equal powers of §, we obtain the following
0(1) and 0(8) boundary conditions for x=d:

0(1):

0

0
52—0%0—6—20% (16)

9 d
_a—;‘h‘O::uloaltbe (17)

0(8):
%’o%] + 8_2I¢“°+d"£z_o {cos Kzo% %o}
— Kd sin KZO% Yo
= aizodxf’ + %¢fo+dna%0 {COS Kzo%%}

— Kdy sin KZO;—X Yro (18)

9 a2 . 3
3 Y, +dn cos Kz, -a—x—z Y0+ Kdn sin Kz, 8_20 Yoo

d 0 92
=Hn o Yo+ Nloa‘lfﬂ + pyodn o8 Kzo’ax_z Yro

+ Kdn sin Kz, aizo Yro- (19)
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It should be noted that in (12), (13), and (16)-(19) the
arguments of all the functions are x, z,, and z;.

II1.

Using (12) and the requirement of boundedness of i,
at x =00, We can express ¥, and Yy, as

ZEROTH-ORDER FIELDS

o= Agje A0 Vet (20)
sin k.x
— J ts[fj.:o 2
Yo=By sin kjde (21)
where
k=B(— )2 (22)

The wavenumber f, is always taken to be positive and
s=1or —1 according to whether the phase propagation is
in the +z or — z direction. Let [M] be a 2 X2 matrix with
the elements given by

My=-M,=1 My=8 My=pgk cotkd (23)

and [F,] a 2X1 matrix with the elements 4, and B,,

which are functions of the slow space scale z,. The ap-
plication of the boundary conditions (16) and (17) yields

[M][Fy]=0. (24)

For a nontrivial [F ], we obtain from (24) that
Ag,= By, (25a)
fiiok, cot kyd= — B, (25b)

where (25b) follows from the requirement that
det [ M]=0. (26)

The zeroth-order dispersion relation (25b) has solutions
only for real values of k, or negative values of p,,. Then,
(9a) shows that real 3, exists only in the frequency range

w01=wc<w0<[wc(wc+l)]1/2=w02. (27)

If B is a solution, —f3 is also a solution of the zeroth-
order dispersion relation. Using (22), we write (25b) con-
veniently as

tan [ Bd(— o)™ *]=(— o).

For each value of w, lying within the range given by (27),
there can be multiple solutions of f, restricted to the
regions

(28)

- 1 .
(j—l)w<ﬁjd(__lu’10) 1/2<(j_§)77’ Where‘/=17273*."
(29)

and the integer j gives the order of the waveguide mode.
Let

3 d(w(z)—wf)[wc(wc+ l)—w(z)] (30)
o™ ‘*’0[ [)’dec+wt(wc+ l)—wé]

which is always positive for the frequency range given by
(27). From (28), we can deduce that for s=1 (—1), the
group velocity is given by —u,(v,,). Therefore, as is well
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Fig. 2. Zeroth-order dispersion diagrams for w, =0.290 and Kd=27. a:
fundamental Floquet mode having the wavenumber B, with r=1. b:
first-order Floquet mode having the wavenumber (—f,+ K) with
t=1. ¢: first-order Floquet mode having the wavenumber (— 8, + K)
with ¢=2.

known [12], these guided magnetic waves are backward
waves.

We shall investigate the contradirectional coupling and
take the zeroth-order fields to be the superposition of the
rth mode (8= f,. s=1) with its phase propagating in the
+z direction and the rth mode (5=, s=—1) with its
phase propagating in the —:z direction. From (20) and
(21), the corresponding magnetic potentials are obtained
as

¢L‘0=A0‘:e’ﬁr‘"d’e‘ﬁr10+Ao’te‘ﬁ'(-‘_d)e"ﬂ'zo (31)
sin k,x sin k,x
=R r B2 ~ ! —1Bz¢ 32
- e - e ,
o= Bor Gy k,d % sin k,d (32)

where the superscripts on the wave amplitudes indicate
the direction of phase propagation.

IV. CourLED-MODE EQUATIONS

The boundary surfaces of the YIG film are periodically
varying with the wavenumber K. Therefore, the Floquet
theory [13] stipulates the dependence of the fields in the
direction of periodic modulation and propagation to be of
the form exp [i( 8+ nK)z] where 8 is the fundamental
wavenumber and the integer » running from —co to o
gives the order of the Floquet mode. The zeroth-order
fields are valid for the limiting case of vanishing modula-
tion index for the boundary undulations. The wavenum-
bers 8, and — f3, are the zeroth-order approximation to the
fundamental Floquet modes. In Fig. 2, from (28), we have
shown the zeroth-order dispersion curves for the funda-
mental Floquet mode with its phase propagating in the
+ 2z direction and having the wavenumber S, with r=1
corresponding to the waveguide mode order 1, and the
first-order Floquet mode with its phase propagating in the
-z direction and having the wavenumbers (— 8,+ K)
with r=1 and 2 corresponding to the waveguide mode
orders 1 and 2. These zeroth-order dispersion curves inter-
sect. The values of B,, B,, and w, corresponding to each
intersection point can be obtained from (28) and the
relation

B=-B+K (33)

Near the intersection points the two phase-matched
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zeroth-order Floquet modes interact. To understand the
nature of these first-order contradirectional interactions
we shall examine closely the neighborhood of the intersec-
tion points on an expanded scale. Therefore, in the
boundary layer expansion of w, w, is chosen to coincide
with the value of w corresponding to the intersection point
of the two zeroth-order dispersion curves.

From (12) and (13), the homogeneous first-order prob-
lem is seen to have a nontrivial solution as given by (31)
and (32). Therefore, the inhomogeneous first-order prob-
lem has a solution if and only if certain solvability condi-
tions are satisfied [14]. To determine the solvability condi-
tions, we look for a particular solution of ¥, in the form

¢11 = gir(‘x)eiﬂr20+ glt(x)e N 1/3,20’ = U,f. (34)

Substituting (31), (32), and (34) into (13) and using the
orthogonality of the Floquet modes, for the Floquet mode
exp (iB.zy), we get the differential equations satisfied by
8,-(x) and g, (x). Solving these differential equations sub-
Ject to the requirement of boundedness of g (x) at x = o,
we obtain that

g, (x)= ziAO,xe_Bf(‘ Dt A e Px—D  (35)
My 2p + 2118r d +
Ax)=—| —kBof — —8B
gf( ) H10 0 Bio 07
X cos k,x sin k,x
"2k sink.d " Vsinkd (36)

where the coefficients 4,, and B,, have to be determined
from the 0(5) boundary conditions.

To obtain the boundary conditions for g,,(x) and g;(x),
(31), (32), and (34) are substituted into (18) and (19). With
the help of (33), the functions of z, are written in terms of
exp (iB,zy) and exp (—if,zy). In view of the orthogonality,
the boundary conditions should be satisfied for each of
the Floquet modes separately. For the Floquet mode exp
(iB, zy), the resulting boundary conditions, when simplified
with the help of (22) and (25a) and (25b), are given by

£.(d)= %uw-m7<ﬂ+m@—gﬂ%,on

[geent) _ =mo| a0 _ -Ltpag.

(38)

Let [P, ] be a 2X1 matrix with the elements p,, and
Dy2- When (35) and (36) are substituted into (37) and (38),
we obtain that

[M][F,]=[P,] (39)
where
. 1) 3d pikid
=—id|ll—— AT — Ag
Pin ( :“10)831 o 2B 0
1 1y
+ = d —(,8 +K)[1 Ay, (40)
:U“IO
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Pin= MIIB (1 + B, d)At-

(41)

When (26) is used in (39), a relation is obtained between
the elements of [ P,]. This relation is one of the solvability
conditions. With the help of (9a) and (9b) and (30), this
solvability condition can be simplified and written as

.0 _
wlA(;; - lvgra“ZlAJ; = T'CrtAOI (42)
where
Crt= ﬁlgt( 18r+K)Ugr/2lBr' (43)

Applying the boundary conditions for the Floquet mode
exp (—if,zy) and proceeding as before, we can deduce the
second solvability condition in the form

Ao =nC, A, (44)

d
ErN
The solvability conditions (42) and (44) are the coupled-
mode equations governing the interaction of the zeroth-
order Floquet modes exp (i,z,) and exp (— i3, z,) result-
ing from the periodic undulations of the boundary
surfaces of the YIG film,

w Ay, + 10,

V. FILTER CHARACTERISTICS

From (42) and (44), 4, and A, can be shown to satisfy
the same differential equation. Substituting 4 = A4, exp
(iB,z,) in that differential equation yields the followmg
first-order dispersion relation:

w12+w1181(vgr_vgl)_v 011812
_an(ﬁ +K)(IBI+K) gr gl =0. (45)

Since for n=0 it correctly reproduces the two group
velocities, the first-order dispersion relation (45) is in the
correct characteristic form.

The analysis of (45) shows that there is a stopband in
frequency resulting from the interaction of the two modes.
The guided wave is evanescent for w_ <w<w, where

0,0 L( B+ K)( B+ KN}
(v +v,) K

(46)

W, =wy*

Atw=(w_+w,)/2=w,, =, the maximum decay rate

(Bi)mex={(B+K)( B+ K)}/*y/2 (47)

occurs. In the evanescent region. the wavenumber is giv-
en by

ﬁlrz(w_wo)(vgr gt)/2 gr gl (48)
and the decay rate can be expressed as
Bll 20 [(B+K)(B;+K)U,Ug,n
1/2
— (0= (v, +0,)°] % (49)
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Fig. 3. Symmetric wave filter characteristics {or the relative depth of
the corrugations n=0.05. Solid line—rezl wave number:; dashed lLine
—imaginary wzve number. The coupling region corresponds to (1) in
Fig. Z. w,=0.348. 28,/K=2B,/K=10.
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Fiz. 4. Asymmetnic wave filter characteristics {or the relative depth of
.re corrugations 1=0.05. Sohd line—rea! wave number; dashed line
—imaginary wave number. The coupling region corresponds to (2)
Fig. 2. wo=0442, 28,/ K=0.365, 28,/ K=1 435

he analytical expressions for the structure of the stop-
vend show that the width of the stopband and ihe maxi-
decay rate increase linearly with the relauve depth
=i tre surface corrugations.

It the waveguide mode orders of the nteracting modes
are ‘e same, §,=f,=K/2 and r,, =r_, and the resulting
interaction is known as a symumnetric inferaction. It is seen
‘rom i48) that mn a symmetric interaction, the wavenum-
ter remamms a constant at s zeroth-order value
czroughout the evanescent region. Also, since ()=
k7,4, the maximum decay rate 13 independent of the
tnickness of tae YIG film but is a linear function of the
relative depth and the wavenumber of the periodic surface
undulations. In an asymmerric interaction, /5, #8, and
o 7L, with the consequence that in the evanescent re-
gion. the wavenumber varies as a linear function of the
frequency.

In. Figs. 3 and 4, we have shown the characteristics of
tae interacdcn. respectively, for the coupling regions 1
and 2 pointed out in Fig. 2, and for the relative depth of
the corrugations 5=0.05 The maximum decay rate al-

03

ways occurs at the center of the evanescent region. Using
(33} and (47), we can show that the largest value of the
maximum decay rate is obtained for a symmetric wave
filter. No experimental results are available for compari-
son with our theoretical predictions. However, Tsutsumi,
Sakaguchi. and Kumagai [10] have previously determined
the characteristics of the symmetric wave filter by an
approximation of the results of the Floquet theory. We
chose the same physical parameters, namely, Kd=2q,
w,=0.290. and n=0.05, as those used by the previous
investigators {10] to facilitate comparison. The dispersion
relation (24) of Tsutsumi, Sakaguchi, and Kumagai is
accurate up to order . But in the approximations of the
Bessel functions used in deducing the dispersion relation
(24). the same required degree of accuracy has not been
raaintained with the result that the dispersion relaticn
(24). strictly speaking, is not correct for the implied order
of accuracy in terms of the relative depth of the surface
corrugations. Consequently, their results for the symmet-
ric wave filter agree only in general terms with those
deduced here by a rigorous singular perturbation theory.

Vi, CoNCLUDING KEMARKS

We have assumed the fields to have no variation in the
v direction, that is in the direction of the width of the filin.
and have neglected the magnetic losses. All the important
experimentally cbserved characteristics of magnetic waves
on uncorrugated YIG films have been adequately ex-
plained by theories which neglect the field variations in
the direction of the width of the film and magnetic losses
[4]. 16]. It is therefore to be expected that the major
features of the characteristics of filters formed by corru-
gated YIG films can also be explamed by a theory, such
as the one presented in this paper. which assumes the
fields to be uniform in the direction of the width of the
film and which neglects the magnetic losses.

Magnetic waves on YIG films undergo attenuation due
to surface roughness and induced strain between the film
and the subsirate. These losses are expected to be smalier
for magnetic surface volume waves for which the energy 1s
distributed throughout the thickness of the film as com-
pared to magnetic surface waves for which the energy is
concentrated on the surface of the film. As indicated by
Adam and Collins [2] wide-band operation at X-band
frequencies has necessitated the development of devices
using magnetic surface volume waves. Such volume waves
are cbtained 1f the magnetization is paralle] to the propa-
gation direction. It is for this reason thai we have chosen
the magnetization to be parallel to the propagation direc-
tion.

A direct theoretical determination of the characteristics
of a YIG film filter in terms of the physical parameters of
the material and the geometry of the corrugations has
remained an unsolved problem of great difficulty. For the
first time in this paper we have presented a systematic and
rigorous field theory for the characteristics of a magnetic
film filter in terms of the material parameters, the geome-
try of the corrugations, and the frequency of operation.
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We have also provided representative numerical results to
emphasize the characteristics of the magnetic wave inter-
actions. Although the present theory is rigorously valid
only for a film of infinite length in the propagation
direction, if the end effects are negligible, the coupled-
mode equations can be used to deduce the insertion loss
of a filter of finite length by imposing a phenomenological
boundary condition on the wave amplitude.
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The Effects of Nonlinear Membrane Capacity

on the Interaction

of Microwave and

Radio Frequencies with Biological Materials

GARY C. BERKOWITZ, STUDENT MEMBER, IEEE, AND FRANK S. BARNES, FELLOW, IEEE

Abstract—A model for the capacitance of biological membranes as a
function of voltage is used to predict signal mixing and difference-
frequency generation in membranes.

Production of low-frequency signals by the biomembrane from mod-
ulated RF is predicted, and implications for macroscopic modification of
membrane function are discussed.

I. INTRODUCTION

ECENT realization of the significance of nonther-
mal interactions of radio and microwave frequency
fields with biological materials generates a need for theo-
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retical models to account for effects presently being ob-
served [1]-[18]. Furthermore, the biological membrane is
a likely locus for some of these effects [1], [4]-[6]. [12]-
[14], [16]-[18]. A model, based on the nonlinear conduc-
tance properties of the membrane, has been proposed to
describe possible mixing phenomena and rectification [3].

In this paper, we examine voltage-variable membrane
capacitance as another possible mechanism for generating
difference frequencies. An approach taken is to treat the
biological membrane as a “device” similar, in many re-
spects, to a p-n junction diode as used in parametric
amplifiers and harmonic generators. The characterization
for the high-frequency response of the nonlinear capaci-
tance is derived from low-frequency measurements on
artificial membranes.
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