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Magnetic Wave Interactions in a Periodically
Corrugated YIG Film

S.R. SESHADRI, SENIORMEMBER, IEEE

Abstract—The magnetic wave interactions in a YIG film fmviog periodi-

cally corrugated surfaces are investigated for the ease of magnetization

parallel to the propagation direetion. By a singokw boundary perturbation

proeedore, the cmrpled-mode equations governing the nature of the inter-

actions are dedueed and analyzed to obtain the ebaraeterfsties of the

interactions. Representative mrmerieaf results are presented to reveal the

characteristics of the resetting wave filter.

I. INTRODUCTION

M AGNETIZED epitaxial films of yttrium iron

garnet (YIG) are used in the development of mi-

crowave signal processing devices [1], [2]. These devices

are based on the characteristics of the magnetic waves

guided by YIG films. An important feature is that the

small propagation wavelengths of the magnetic waves

result in microminiature structures. Extensive theoretical

and experimental investigations of the characteristics of

the magnetic waves supported by YIG films have been

carried out for different directions of magnetization [3]–

[8]. If the YIG films have spatially periodic properties, the

guided waves propagating in opposite directions interact

to produce a stopband in frequency resulting in a wave

filter [9]. With application to a mictowave filter in mind,

Tsutsumi, Sakaguchi, and Kumagai [10] have investigated

the behavior of the magnetic waves in a periodically

corrugated YIG slab using the Floquet theory. In this

paper, we give a perturbation theory of magnetic wave

interactions in a YIG film having periodically corrugated

surfaces for the case of magnetization parallel to the

propagation direction. An important contribution is the

systematic derivation of the coupled-mode equations

governing the nature of the interactions. The analysis of

the coupled-mode equations has yielded simple and yet

asymptotically exact analytical expressions for the char-

acteristics of the microwave filter formed by a periodically

corrugated YIG film. Althou@ the theory is developed

for sinusoidal surface corrugations, in practice, an array

of shallow grooves is etched on the surface of the YIG.

For this case, by a Fourier analysis, the modulation index

for each of the harmonic undulations of the surface can

be deduced. The theory presented in this paper is then

applicable for each of the harmonic surface perturbations.
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Fig. 1. Geometry of the periodically corrugated YIG film.

The sinusoidal corrugation corresponding to each of the

harmonics gives rise to selective reflection and, hence,

filtering action at a particular frequency.

II. FORMULATION OF THE PROBLEM

A thin film [1x1< d(z)] of YIG (PO p,, Cocn) magrietized

uniformly in the z direction is embedded in a dielectric

medium (PO, (0) as shown in Fig. 1. The angular frequency

corresponding to the saturation magnetization of the

ferrite is denoted by ~M and the corresponding wavenum-

I 2 We normalize the time by I /@M,ber kM = OM( pocoq) / .
all the distances by 1/kM, the magnetic field by ( pO)- 1/2,

and the magnetic flux density by (PO) 1/2. Let t, (x,y, z), H,
and B denote the normalized values of the time, the three

Cartesian coordinates, the magnetic field, and the mag-

netic flux density, respectively. We shall consider only

magnetic waves (H,, H,, BX,B,) progressing in the z direc-

tion, possessing no variation in they direction, and having

the time dependence exp ( – itit) where o is the wave

angular frequency. The relative permeability P, of the

ferrite is obtained as

f%= pl(~~ +-W)+ ip2(~j –j.~) + 22 (1)

PI= 1 –@,/(~2–@ (2a)

p2=u/(u2–&l:) (2b)

where tic is the gyromagnetic angular frequency.

The boundary surfaces x = t d(z) of the YIG film have

weak sinusoidal undulations about the planes x = k d as

given by

x= fd(z)=t d[l+&JcosK z]. (3)

The modulation index q, the phase, and the spatial peri-

odicity 27r/K of the undulations are the same for both the

surfaces .~= i d(z) with the result that the YIG film is
symmetrical about the x = O plane. The modulation index

q is small, and a formal expansion parameter 8 is used to

exhibit its smallness.
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In the magnetostatic approximation [3], [ 10], H(r) can

be obtained in terms of a scalar magnetic potential $(r)

through the relation

H(r) = v+(r) (4)

and B(r) inside the YIG and outside are given by

B(r) = p,”H(r), for 1x1<d(z) (5a)

B(r) = H(r), for 1x1>d(z). (5b)

A subscript j or v is added to ~ according to whether +

pertains to the ferrite or the dielectric region. For 1x1<

d(z), of satisfies the differential equation

(6)

The potentials and the fields have either odd or even

symmetry about the x = O plane. Since the geometry of the

YIG film is also symmetrical about the x = O plane, two

independent modes are possible, one for which ~ is even

in x, and the other for which it is odd in x. This symmetry

enables us to omit from consideration the fields for x <O.

We investigate only the mode for which ~ is odd in x for

the following two reasons. First, the lowest order mode for

which ~ is odd in x is the dominant mode. Previously, for

the mode for which ~ is odd in x, Tsutsumi, Sakaguchi,

and Kumagai [10] have determined the wave characteris-

tics by an approximation of the results of the Floquet

theory. Since we wish to compare some of our results with

those of Tsutsumi, Sakaguchi, and Kumagai [10], we also

treat the same mode for which $ is odd in x. However, it

should be noted that the mode for which + is even in x

can be treated in a similar manner.

A boundary layer expansion of w as given by

O=tio+aa, (7)

is introduced around tiO which will be chosen subse-

quently, Substituting (7) in (2a), expanding the resulting

expression, and retaining only up to terms linear in 8, we

get

Pl=Plo+@ll

where

p,o= 1–tic/(ti:-@

pi 1= 2@c%ti,/(ti; – 0:)2.

Using the method of multiple scales [1 1],

perturbation expansion of ~ in the form

*,( X, Z)=+,O(X?.ZO,Z,) + Wt,(x>%,z,),

(8)

(9a)

(9b)

we carry out a

t=o,j (lo)

where Z.= z is a short scale of the order of the wavelength

in the YIG film and Z1= 8Z is a long scale in which the

accumulated changes of the complex wave amplitude re-

sulting from the spatially periodic thickness of the film

become significant. Using the chain rule of differentiation,

we have

(11)

Substituting (8), (10), and (11) in (6) and equating the

coefficients of equal powers of 8, we get the following

differential equations:

o(l):

[

a2 a2
Plo

I

—+— +j.o=o
ax2 az;

(12)

O(fs):

[p10~+:14f’=-pl’~’13)

In (6), (12), and (13), setting p,= plo = 1 and Pll =0, we

obtain the corresponding equations for the dielectric re-

gion 1x1>d(z).

The required boundary conditions are

Htan(x, z) = Hz(x, z) + (dx/dz)Hx(x,z)

is continuous for x = d(z) (14)

Bnor(x, z) = Bx(x,z) – (~x/~z)~=(%z)

is continuous for x = d(z). (15)

From (3), (dx/dz) along x = d(z) can be determined. With

the help of (4), (5), (8), (10), and (11), the perturbation

expansions of Ht,~(x, z) and B.O,(x, z) for x = d(z) can be

obtained. Since the boundaries of the YIG film are very

nearly the planar surfaces x = * d, equivalent boundary

conditions are derived and applied at the planar surfaces

x = t d. For this purpose, further Taylor series expansions

of the perturbation expansions of Ht,Jd(z), z] and

B.O,[d(z), z] around x = d are carried out, keeping only up

to terms linear in 8. In these expansions, equating the

coefficients of equal powers of 8, we obtain the following

O(1) and 0(8) boundary conditions for x = d:

o(l):

& 4’.0 = & +fo

++.o=PIo&+fo

o(s):

a a
+$ O1+++.O o

{
+ dq ~ COS ~Zo ~ +00

1

– Kdq sin IYzo & VOo

+%+= foa $ +dq+
{

a—— Cos Kzo ~ +’0
1

– Kdq sin Kzo & ~fo

%ax ,1+ dq COS ~Zo ~ +00+ Kdq sin Kzo~ IJOO
o

a az
=Pllz+fo +PIO:I$l +/. qo@ COS ~:O~*fO

a
+ Kdq sin KZO ~ ~jY (19)

o

(16)

(17)

(18)
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lt should be noted that in (12), (13). and (16)-(19) the

arguments of all the functions are x, Zo, and z 1.

IIL ZEROTH-ORDER FIELDS

Using (12) and the requirement of boundedness of too

at x = m, we can express YCOand ~fo as

+co=~o,’
–~(~–d)el,~.u (20)

(21)

where

k,=~J(–pJ1’2. (22)

The wavenumber ~, is always taken to be positive and

s = 1 or — 1 according to whether the phase propagation is

in the + z or – z direction. Let [M] be a 2 X 2 matrix with

the elements given by

Ml, = –&llz= 1 &f21=~ M12=p10~ cot kJd (23)

and [F.,] a 2 x 1 matrix with the elements A., and B.,,
which are functions of the slow space scale z,. The ap-

plication of the boundary conditions (16) and (17) yields

[M][FO,]=O. (24)

For a nontrivial [Fe,], we obtain from (24) that

Ao, = Bo, (25a)

hkJ cot $d= – ~ (25b)

where (25b) follows from the requirement that

det [M] =0. (26)

The zeroth-order dispersion relation (25b) has solutions

only for real values of k; or negative values of plo. Then,

(9a) shows that real ~ exists only in the frequency range

0.,= O.<OO<[ 0.(0. +1)]’’2=002. (27)

If ~ is a solution, – 8 is also a solution of the zeroth-

order dispersion relation. Using (22), we write (25b) con-

veniently as

tan [ ~d(– P1O)-“’]= (-P,o)’/2. (28)

For each value of co. lying within the range given by (27),

there can be multiple solutions of ~J restricted to the
regions

()
(~- l)7<B,d( --p10)-1’2< j–~ ~, where j=l,2,3, . .

(29)

and the integer j gives the order of the waveguide mode.
Let

d(ti;-u~)[tic(c++ 1) –~ij
vu = (30)

~o[fl,dtiC+c+(tiC+ l)-a:]

which is always positive for the frequency range given by

(27). From (28), we can deduce that for s= 1 (– 1), the

group velocity is given by – o~(ow). Therefore, as is well

2011

[
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Fig. 2. Zeroth-order dispersion diagrams for u== 0.290 and Kd= 27r. u:
fundamental Floquet mode having the wavenumber /3, with r= 1. b:
first-order Floquet mode having the wavenumber (– ~, + K) with
t = 1. c: frost-order Floquet mode having the wavenumber (–&+ K)
with f=2.

known [12], these guided magnetic waves are backwar[i

waves.

We shall investigate the contradirectional coupling and

take the zeroth-order fields to be the superposition of the

rth mode ( PJ=&, s = 1) with its phase propagating in the
+ z direction and the tth mode (~, = ~t, s = – 1) with its

phase propagating in the – z direction. From (20) and

(21), the corresponding magnetic potentials are obtained
as

+ —~r(~–d)ei~,zo+~o;e –Mz-d)e-ifl, zo
+.0 = J’i# (31)

~ sin k,x
~JO = ‘Or sin krd

sin kx – ,B,zo
e ‘p””+ Bo; = e (32)

1

where the superscripts on the wave amplitudes indicate

the direction of phase propagation.

IV. COUPLED-MODE EQUATIONS

The boundary surfaces of the YIG film are periodically

varying with the wavenumber K. Therefore, the Floquet

theory [13] stipulates the dependence of the fields in the

direction of periodic modulation and propagation to be of

the form exp [i( ~ + nK)z] where ~ is the fundament:i 1

wavenumber and the integer n running from – m to co

gives the order of the Floquet mode. The zeroth-order

fields are valid for the limiting case of vanishing modula-

tion index for the boundary undulations. The wavenum -

bers ~, and – ~[ are the zeroth-order approximation to thle

fundamental Floquet modes. In Fig. 2, from (28), we have

shown the zeroth-order dispersion curves for the funds-

mental Floquet mode with its phase propagating in the

+ z direction and having the wavenumber ~, with r= 1

corresponding to the waveguide mode order 1, and the

first-order Floquet mode with its phase propagating in the

– T direction and having the wavenumbers (--~, + K).

with t= 1 and 2 corresponding to the waveguide mode
orders 1 and 2. These zeroth-order dispersion curves inte[-

sect. The values of (3,, &, and tio corresponding to eaclh

intersection point can be obtained from (28) and the

relation

~,=- f3,+K. (33)

Near the intersection points the two phase-matched
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zeroth-order Floquet modes interact. To understand the

nature of these first-order contradirectional interactions

we shall examine closely the neighborhood of the intersec-

tion points on an expanded scale. Therefore, in the

boundary layer expansion of O, tiO is chosen to coincide

with the value of u corresponding to the intersection point

of the two zeroth-order dispersion curves.

From (12) and (13), the homogeneous first-order prob-

lem is seen to have a nontrivial solution as given by (31)

and (32). Therefore, the inhomogeneous first-order prob-

lem has a solution if and only if certain solvability condi-

tions are satisfied [14]. To determine the solvability condi-

tions, we look for a particular solution of +1 in the form

4,1 = gir(~)eipr’”+ g,(x)e - ‘8’0, i = v,f. (34)

Substituting (31), (32), and (34) into (13) and using the

orthogonality of the Floquet modes, for the Floquet mode

exp (i~,zo), we get the differential equations satisfied by

g.,(~) and gf,(x). Solving these differential equations sub-
ject to the requirement of boundedness of gt,(x) at x = m,
we obtain that

a
go,(x) = i~AJxe –Lw@+~*re-/3, (x-4 (35)

I

X COS k,x sin k,x

2k, sin k,d
+B1,~

sm k,d
(36)

where the coefficients A ~, and B,, have to be determined

from the 0(8 ) boundary conditions.
To obtain the boundary conditions for gC.(x) and gf,(x),

(3 I), (32), and (34) are substituted into (18) and (19). With

the help of (33), the functions of Z. are written in terms of

exp (i/3,zo) and exp ( – i&zo). In view of the orthogonality,

the boundary conditions should be satisfied for each of

the Floquet modes separately. For the Floquet mode exp

(i/3,zo), the resulting boundary conditions, when simplified
with the help of (22) and (25a) and (25 b), are given by

()gcr(d) =gf,(d)+ +dq; (P,+ K) 1 – & & (37)
r

{*gvr(x))r=d=plo(+gfr(x)}x=d-flBrAJ
(38)

M(l+~,d)A;.plr2= Zplo (41)

When (26) is used in (39), a relation is obtained between

the elements of [PI,]. This relation is one of the solvability

conditions. With the help of (9a) and (9b) and (30), this

solvability condition can be simplified and written as

where

c,, = – P,( 9, + ~)~gr/2& (43)

Applying the boundary conditions for the Floquet mode

exp ( – i/llzo) and proceeding as before, we can deduce the

second solvability condition in the form

The solvability conditions (42) and (44) are the coupled-

mode equations governing the interaction of the zeroth-

order Floquet modes exp (i~,zo) and exp ( – i~[zo) result-

ing from the periodic undulations of the boundary

surfaces of the YIG film.

V. FILTER CHARACTERISTICS

From (42) and (44), A: and Ao; can be shown to satisfy

the same differential equation. Substituting A J = A ~m exp

(i~lzlj in that differential equation yields the following

first-order dispersion relation:

– + q2( /3,+ K)( & + Zqug,q,, = o. (45)

Since for q = O it correctly reproduces the two group

velocities, the first-order dispersion relation (45) is in the

correct characteristic form.

The analysis of (45) shows that there is a stopband in

frequency resulting from the interaction of the two modes.

The guided wave is evanescent for u_ < w <u. where

ugrugr{(P,+K)(Bf+K)}”2q
cd+ =(A)ot (46)

(Ugr+ Ug,) “

At u=(u_+u+)/2=u~,X = tie, the maximum decay rate

Let [P.,] be a 2 x 1 matrix with the elements PM,l and (P,l)max= {( Br+K)(B, +K)}’/2q/2 (47)

P.,2. When (35) and (36) are substituted into (37) and (38),
we obtain that

occurs. In the evanescent region, the wavenumber is giv-

en by
[~][~,r]=[~,r] (39)

81, = (Q – ~o)(~gr – ogf)/2ugrog, (48)
where

()
and the decay rate can be expressed as

pl,l=–id l–~
$AG _ Pllk;d

—A;
~1 l-how, P,, = &[(Br+K)(P,+K).;ro;,,’

gr gt

()++i#(/3r+~)1–+ ‘O;t% (40) - (0- CJoy(ogr+ OJ] “2. (49)
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G.G1 ways occurs at the center of the evanescent regicm. ?Jsir g

~’”’-g

\
(33) and (47), we can show that the largest value of the

maximum. decay rate is obtained for a symmetric wave

filter. No experimental resttlts are available for compali-

~
son with our theoretical predictions. However, Tstttsurli,

‘.
\ ~a~aguchi. and Kurnagai [10] have previously determimxl

, , , b ! I
the characteristics of the symehic wave filter by .3ntI -Cl I !@/~ j 0.1

I //’
zpproximation ot’ the results of the Floquet theo~. V!re
chose the same physical parameters, namely, Kd = 2<7,

w, = 0.290. and ~ =0.05, as those used by the prevml~s

~= +:.\,\J investigators [10] to facilitate comparison. me dkpet-sim

/’ relation (2!4J of ~sutsttmi, ~akaguchi, and Ktmagai is

[ ./ accurate ttp to order q2. Eh2t in the approximations of the
- Q.CI Elessel functions used in deducing the dispersion relation

Fig. 3. !iYmxnetr-k wave filter ckamcteristlcs for the relatwe ck@ of (ZLI), the same required degree of aCCUEKy has not been
the mrragatiom q =0.05. Solid line—rez.l wave number: dashed tme
— iw.a~ma.ry we w number. The cotsplmg region corresponds to (1) in maintained with the result that the dispersion relation

fig. 2. Uti=&348. 2&/K= 2&/~= 1.0 (24). strictly speaking, is not correct for the implied uTder

cf accuracy in terms of the relatnw depth of the surface

corrugations. Consequently, their results for the symmct-
C.02 ric wave filter agree only in general terms with those

I

[ ‘~

tij!
deduced here by a rigorous singular perturbation theory.

/.,. I

I

Fig. 5. Asynmetnc wave falter characterisks for the relatwe depth of
.ke cortugatiom q = 0,05. Sohd line—real wave number; dashed hne
—iITl~g,Srmry wave number. The ccwpling region corresponds to [2) m

Fig. 2. cc= C.442, 2flr/K=0.365, 2i8r/ K== 1535.

...-.
I f~r znaljtical expressions for the structure of the stop-
b~~~ ~,;~~w that the width of the s~op”D~~d ad ihe maxl-

j~ u:r, iixajy rate increase linearly with the relatwe depth

cf tc~ surface corrugations.

II the waveguide mode orders of the interacting modes

are “:;hesame, ,6, = /3, = .K/2 and Cg,= EE~,and the resulting

Ir:kraction is known as a symmetric interaction. 11 is seen

~r~rrl (48) that in a symmetric interaction, the wavenum-
-..~~r rerm.ms a constant at Its mmth-orcfer value
;i-xoughout the evanescent region. A&o. since ( P,, )~., =

3K- :’4. file maximum decay rate IS independent of the

tlximess of the YIG film but is a linear function of the

rslat~ve depth and the wavenumber of the periodic surface

:xiulatiorm. k an asymmetric imteracti~n, fi, +~f and

L,, + c=, ‘wtih the consequence that in the evanescent re-

g:or~. the ‘wa% enumber varies as a linear function of the

fieqtlel-lc:{.

lr, ~Igs. 3 And 4, we have shown the characteristics of

tiae inleraccicn, respect,iveiy, for the coupling regions 1

and 2 pointed out in Eg 2, mid for the rekitive depth of
the c:m-qgatll~ns q = 0.05. The rnaxu-num decay rate al-

‘$fl~ ~~~e ~ss~me~ ~~e fi~~~~ ~~ ~a~e ~~ ~a~iation in ~~~e

j checticm, that is in the direction of the width of the film.

and have neglected the magnetic losses. All ihe important

experimentally observed characteristics of magnetic waves

orI uncorrugated YIG films have been iideqttately eX-

plained by theories which neglect the field variations in

the direction of the width of the film and magnetic losses

[4]. [6]. It is therefore to be expected that the major

features of the characteristics of filters formed by ccmru.-

gated YIG films can also be explained by a theory, such

as the one presented in this paper. which assumes the

fields to be uniform in the direction of the wl.dth of the

film and which neglects the rnagmetic losses.

Magnetic waves on Y“IG films undergo attenuation due

to surface roughness and induced strain betweel~ the film

and the substrate. These losses are expected to be s.mal ier

for magnetic surface volume waves for which the energy is

distributed tbt_ou.@out the thickness of the film as com-

pared to magnetic surface waves for which the energy is

concentrated on the surface of the film. AS inciicated ~y

Adam and CoiIins [2] wide-band operation at X-band

frequencies has necessitated the development of devi:cs
using magnet]c surface vohtme waves, ~tt C?t ~-oiume wa’$.ws

me obtained d the magnetization is parallel to the pro] M-

gahon directors. It is for this reason that we have chosen

the magnetization to be parallel to the propagal ion direc-

tion.

.4 direct theoretical determination cd the cf-taractetisl ics

of a YIG film fiRer in terms of the physical parameters of
the material and the geometry of the corrugations 1!MS

remained an unsolved problem of great difficulty. For Ihe

first time in this paper we have presented a systematic and

rigorous field theory for the characteristics of a magnetic
fdm fliter in terms of the materia~ parameters, the geolne-

try of tile corrugations. and the frequency of operation.
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We have also provided representative numerical results to

emphasize the characteristics of the magnetic wave inter-

actions. Although the present theory is rigorously valid

only for a film of infinite length in the propagation

direction, if the end effects are negligible, the coupled-

mode equations can be used to deduce the insertion loss

of a filter of finite length by imposing a phenomenological

boundary condition on the wave amplitude.
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The Effects of Nonlinear Membrane Capacity
on the Interaction of Microwave and

Radio Frequencies with Biological Materials
GARY C. BERKOWITZ, STUDENT MEMBER, IEEE, AND FRANK S. BARNES, FELLOW, IEEE

Abstract—A model for the capacitance of biological membranes as a

function of voltage is used to predict signal mixiog and differene~

frequency generation in membranes.

Production of low-frequency sigoafs by the biomembrane from mod-

ulated RF is predict@ and implications for macroscopic modification of

membrane function are discussed.

I. INTRODUCTION

R

ECENT realization of the significance of nonther-

mal interactions of radio and microwave frequency

fields with biological materials generates a need for theo-
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retical models to account for effects presently being ob-

served [1 ]–[ 18]. Furthermore, the biological membrane is

a likely locus for some of these effects [1], [4]-[6], [ 12]–

[14], [16] -[18]. A model, based on the nonlinear conduc-

tance properties of the membrane, has been proposed to

describe possible mixing phenomena and rectification [3].

In this paper, we examine voltage-variable membrane
capacitance as another possible mechanism for generating

difference frequencies. An approach taken is to treat the

biological membrane as a “device” similar, in many re-

spects, to a p-n junction diode as used in parametric

amplifiers and harmonic generators. The characterization

for the high-frequency response of the nonlinea; capaci-

tance is derived from low-frequency measurements on

artificial membranes.
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